
NASA-CR-203070

NASA/WVU Software IV & V Facility

Software Research Laboratory

Technical Report Series

Lem timg from Inconsistency

NASA-IVV-96-00 i

WVU-SRL-96-001

WVU-SCS-TR-96-!

CERC-TR-TM-96-001

/}4,' ;:/-/_

bv St,.w Easterbrook

,, ,'7_ £;" ;.e;..-:-'D+_:_" g

;4} ¢:._.U£_£e:_'L,:g'e ,*, >_7_-:_/i5: ..0".{ 'g :. "

National Aeronautics and Space Administration

West Virginia University

Accordingto the termsof CooperativeAgreement#NCCW-0040,

the following approval is granted for distribution of this technical

report outside the NASA/WVU Software Research Laboratory

(_o_r_abol_'sh Date

Man_r, Software Engineering

John R. Callahan Date

WVU Principal Investigator

To appear in Proceedings, Eighth IEEE International Workshop on Software Specification and Design,
Paderborn, Germany, 22-23rd March 1996

Learning from Inconsistency

Steve Eastcrbrook

NASMWVU Sd-tware Research Lab
NASA IV&V Facility. 100 University Drive. Fairmont` WV 26554

steve@ atlantis jw.nasa.gov

Abstract

This position paper argues that inconsistencies that
occur during the development of a software specification
offer an excellent way of learning more about the
development process. We base this argument on our w_ork
on inconsistency management. Much attention has been
devoted recently to the need to allow inconsistencies to
occur during software development, to facilitate flexible

development strategies, especially for collaborative _ork.
Recent work has concentrated on reasoning in the presence

of inconsistency, tracing inconsistencies with 'pollution
markers', and supporting resolution. We argue here that

one of the most important aspects of inconsistency is the
learning opportunity it provides. We are therefore
concerned with how to capture this learning outcome so
that its significance is not lost. We present a small
example of how apprentice software engineers learn from
their mistakes, and outline how an inconsistency
management tool could support this learning. We then

argue that the approach can be used more generally as part
of continuous process improvement.

improvement. This implies an acknowledgement that
process models are never perfect, that _ is always room
for improvement- In general, there are two ways in which
process improvements are identifmd: retrospectively or
dynamically [7]. Retrospective improvement identifies
areas of stress in the process enactment, and incorporates

improvements based on hindsight. Dynamic process
improvement allows developers to change the process
model as problems are encountered. In both cases,
adhew,,nce to the proosss model is maintained. In practioe, a
combination of the two approaches is desirable,

incoqxzatingthelocal comcxtual knowledge availablein

dynamic process improvement, with the benefit of
hindsightoffered by retrospectiveimprovement. As

Cugola et.al.[2]argue,thiscan be achievedby allowing
deviationsfrom the prescribedprocess,and providing

supportfordealingwith theresultinginconsistencies.
Inthispaper,we are_ primarilywith(deviation

from) specificationmethods. However, the arguments
applyequallytothetypeoffree-grainedprocessmodelling

describedby Nuscibeh er al.[9].and perhapsto process

modellingingeneral

1. Introduction

During the development of a specification, software
developers are directed by methods (for technical guidance)
and process models (for co-ordinating development
activities). Although both are prescriptive, neither are

perfect. We argue in this paper firstly that a flexible
approach to the application of methods and process models
is needed, and secondly that much can be learnt from

studying instances of deviation, especially in terms of

process improvement.
In the case of methods, any particularmethod is

developed from experience on a set of cases in a particular
domain or domains; it is rare that subsequent projects will

map on to the original cases perfectly. In fact. most of the
common methods available now have evolved considerably
from their original design. Poor method fit has hampered

the uptake of CASE tools: the tools often force developers
to apply a method too rigidly for practical use. There is no
reason to assume that because a method is mature enough
to be used widely, it should not also continue to evolve.

In the caseof process models, the long team rationale for

process modelling is that it facilitates process

2. Inconsistency Management

In Eas_ er al. [3] we introduced a broad definition

of inconsistency,as any situation in which a relationship
between two parts of a specification should hold but does
not. This allows us to consider inconsistencies in any
notation. Of course, this also makes inconsistency entirely

method-dependent,asthemethod (orpossiblytheprocess
model)defineswhich relauonshipsshouldhold.

The need for a tolerant approach to inconsistency has

been recognised by a number of authors [1; 5; 8; 10].
While these approaches offer ways of proceeding with

development in the presence of inconsistency, and of
analysing and resolving inconsistencies, none have yet
addressed the question of what can be learnt from the
occurrence of inconsisteacy. We regard the ¢c.curreace of
inconsistency as a good indicator of problems in the

prescribed development process. For example, in [4] we
show how analysis of inconsistencies can reveal

amceptual disagrectmmts between developcPs.
Existin 8 work on managin8 inconsistency concentrates

on identifying the deviations, and reasoning about the
_tness of the resulting process. For example, Cugola

-1-

\

radiate

user user

records records

merge
user user

F_gure1: A portion of a dataflow diagram in which the
author has deviated from the method, as process 1.2
passesits inputto itsoutputwithoutb.ansforrnation.

et. ol. [2] introduce '13ollution markers', to track deviations
from a process model, but do not offer any way of
identifying lessons from such deviations. In the next
section we present a small example, to show how leamin8
can [_ultfromsuchdeviauous.

3, Example

When students first learn to usedataflow diagrams, they
make a number of conceptual errors. For example, they
may fail to distinguish between physical dataflow and
logical dataflow, because they confuse the abstract notion
of process with the concrete notions of place or person.
Partly. this is because software engineering students take a
while to become comfortable with the use of abstraction.

This leads to a number of typical mistakes, of which we
will consider just one: a failure to appreciate that a
dataflow cragram is conce.med with traasformat/on of data.

Figure 1 shows a portion of a dataflow diagram
illustrating a typical mistake: the data item 'user records'
is shown as both an input to and an output from the
process "validate user records', without my apparent
Iransformafion. This is a typical naive attempt to model an
observed system in which (say) paper files are passed
around an o_c_. This diagram is inconsis_t acco_lin8
the semantic rules for dataflow diagrams.

We can recognise this as an inconsismncy, usin8 any
one of a numberof techniques for detecting inconsistency.
Indeed we would expect a specification tool to detect such
problems. The detection of the inconsistency is not what
we ate inlemsted in here, but rather, what the student then
does. Imagine the student is using a CASE tool. and the
tool reports the inconsistency in the above diagram. The
tool may even provide some analysis of the problem.
perhaps identifying the edit action that led to the
inconsistency. However. the student still does not
understand the problem, because he has not grasped the
notion of data transformation. The student needs some
guidance on what the options am from this position

A brief analysis of the mistake leads us to suggest four
likelyoptions(seefigure 2):
(a) fork- the same item of data should be passed to both

processes 1.2 and 1.3;
(b) rename: process 1.2 does in fact transform the data

before passing it on to 1.3;
(c) bypass: process 1.2 doesn't need this data item. and it

a) Fork- b) Rename:

user
records

validate

user

input user merge
user records user

validate

user validated
user user

records records

user

c) Bypass: d) Dele_

F'_uro2: Fourposses actionto correctthe mistakeshowninfigure 1.

-2-

should be passed straight to 1.3
(d) delete:wocess 1.3 deesu't need this data item, andthe

flow to 13 should be deleted.

We have givm each of the actions a name for convenience:
these could be offered as a menu of actions in a support
tool. There are of course other actions that could also be
taken that may resolve or ameliorate the inconsistency; we

have merely selected the most likely.
Note at this point that the names of the processes

suggest that the most likely choice is action Co). However,
this is only an informal observation, available because the
student has chosen particularly redundant names for the
processes. In the general case. it is not possible to extract
such semantic information to determine which action
should be taken.

3.1. Prescribing Repair Actions:

Although the example and the four actions are relatively
simple, we can imagine a large number of possible
inconsistencies that can arise during software specification,
and it is worth asking how feasible it is to generate a list

of suggested actions for each possible inconsistency. There
are three main sources of information from which the list

of possible actions is comtmcted:
• Initial ob_rvations by the method designer - as each

inconsistency rule must be explicitly defined, the

designer may also be able to suggest some basic repair
actions

• Analysis of the inconsistency rule - some actions can
derived directed from the formal representation of the

inconsistency rule. For example, any action that negates
a precondition of the rule is a candidate for suggestion:
actions Co) and (d) above have this effect, as they remove
one of the items in the specification that caused the rule
to fail

• Past experience - each time the inco_istency occurs and
is resolved, it provides data about possible actions. This
is one of the learning outcomes we described below.

In addition m identifying possible actions, it is possible to
reason about which to recommend. Such reasoning can
take into account the context under which the

inconsistency occurred. If we have available the
development history of the specification, including the
actions that led to the inconsistency,then some choices
can be eliminated as they will be retrograde steps.

Similarly. if the inconsistency occurs between parts of the
stx_citication developed by different people, and one has
been updated more recently than another, then a transfer of
information between the developers might be needed.

Again, we expect to build up a set of heuristics to guide
the selection as we gain more experience with the

approach.
To explore these issues we have developed a framework

for representing repair actions, in which each action has a
name, for menu selection; pre- and post-conditions, to

facilitate reasoning about its effects: and a rationale, to
offer informal guidance about its applicability [3].

3.2. Learning Outcomes

Them are five ways in which learning may occur in this
exanpl
1) The developer learns what actions the method

pregaibes (or more often, proscribes). In this case the
develcgers are students, making a rather basic mistake.
and a tool that merely enforced the method might have
induced thislearningoutcome. However, the lesson is
reinforcedby allowing the developer to explore the

consequences of not obeying the rules.
2) The developer learns why it is that the method

prescribes a particular way of working. In _ example.
this is a move important teaming outcome that the first
one, because it helps address the stu_nt's underlying
conceptual confusion about data transformation in
dataflow diagrams. It is unlikely that students would
gain thislearningoutcome iftheywere preventedfrom

making the mistake, unless a tutorobserved their
_ty.

3) The method designer learns about whether the method
needs updating. In our rather simple example, the
method does not need changing, but one could equally

well envisage an example in which the inconsistency
turned out to be a new exceptional case, in which an
alternative approach is needed. "[his is especially likely
with experienced developers, who would normally have
good reason to deviate firom the method. One of the
repair actions available in our framework is to disable
the consistency rule. If the developer chooses this
action, this is a strong indicator that there is a problem
with method fiL

4) The method designer learns more information about
how to guide subsequent developers. The resolution
action chosen by the developers, and the context in
which the choice was made, can be taken into account

when reasoning about recommendations next time that
inconsistency occurs. In this way a case library can be
built up for various classes of incomistency.

5) The developer learns more about the system being
spocif_L because correction of the problem focuses
attention on areas that are poorly understood. In our
example, the student may need to go back to the domain
and study further how data is passed around.

The first two of these outcomes are limited to the

developers involved, and can play a useful role in training;
however, as with most forms training it is impossible to

observe the learning taking place directly. The next two
outcomes form part of institutional learning, or process
imlmTvement. Both these types can be captureddirectly by

the toolset, either as data for a process review activity, or
as data for case-I_sed apwmch to guiding development
activities. The fifth outcome improves the quality of the

specifa_tion, and can be see_ as a validationactivity.
There isone furtherlearningoutcome, not demonstrated

intheexample,butwhich we can expectto applyinteam

projects:

-3-

6) The developer learns more about how colleagues
understand the system being specified. In cases where
inconsistencies arise between portions of the

specificationdevelopedby d/fie,rentpeople,they each

may gainsome insightintoone another'sview.Inother
cases the inconsistencymay cause the developer to

consultothermembers oftheteam.

Itisunlikelythatallsixlearningoutcomes willapply
atonce,but we would expectatleastone ofthem toapply

timean h_isteucy c_

4. Empirical Experience

Having observedthatexplorationof incomistencycan
lead to learning,we arecurrentlyinvestigatinghow to
facilitatethislearningprocess.We suspectthatinmany

projects,the opportunityfor this kind of learningis
wasted.Our investigationsarebased on empiricalwork in

conjunctionwith analystscurrentlyworking with NASA
to assess the software requirements specifications for the
International Space Station. as part of an Independent
Verifr.ation and Validation0V&V) contract.

We have been working on improvements to the methods

used for performing traceability and completeness analysis
on the Fault Detection, Isolation and Recovery (FDIR)

requirements. At present, the development contractor
produces failure models using the multigraph modelling
method and associated tools. These models are then used to

generate the FDIR requirements, which are currently
represented in natural language, as part of a SRS
conforming to DOD-STD-2167A. The IV&V team
receives the SRS and validates it using their domain

knowledge, and their own modelling tools. Our work
concerns the introduction of a formal method that will

allow the IV&V team toperform completenessanalyses

on these requirements. The method is based on SCR [6],
and makes use of logic tables to represent state changes

and the conditions under which they oocmzr.
During the initial exploration of this new method, we

have wimessed a number of inconsistencies occurring, and
have used these as a way of learning more about how to fit
the method to the project. We have also observed how

investigation of incxmsistency has helped us to develop a
better understanding of the system being specifaxt.

For example, one commonly occurring inconsisteucy in
our initial trials with the method was that phrases

expressing conditions in the SRS would be re-worded
when they were placed in the tables. We had expected that
aconsistencycheckon thewording of these phrasescould

help with traceabilityand validationof the tables.In
practice,thewording intheoriginalphrasesoftendid not
make sensewhen removed from theiroriginalparagraphs.

Forcingthe two to be consistentispossible,but wo_Id
reducethereadabilityofthetables.Hence, carpreferenceis

to allow the inconsistencies to stand for now. and to

develop method guidance for cea'taln kinds of re-wordings.
A second example arises when the requirements are

analysed by different people. In some cases, the tabular

representations imxhazed by different people to represent
the same requirement have differed in the number of
conditions identifa_ and the ways in which conditions are
combined. Literally. the tables had different numbers of
both rows and columns. Investigation has demonstrated

that the style used in the natural language specifications is
inherently ambiguous. As a result we are exploring
improvements in the way in which these original
requirements are expressed, including introducing the
tabular form earlizr in the prx, cess.

Both of these examples show the method designer
learning about how the medmd can be improved to fit the
practioe: learning outcomes (3) and (4) above. Whether we
solve the problems by alterin8 the method, or by evolving
guidance on how to _ depends to some extent on the
cost of changing the existing process. Most importandy,
we have used the occurrence of inconsistencies to

strensthen the argument for process change. Previous
argumentsahem the ambiguity of naturallanguage have
foundered on the facI that replacing them completely with
formal notations is prohibitively expensive. Now,
however,we can show that certain kinds of ambiguity lead

to specific inconsistencies. This allows us to identify
smaller, iuc_mentaL changes to the process.

We have also observed how the occurrence of

inconsistency leads to a betW.r understanding of the system
being specif'w.d. For example, one of the consistency
checks we applied revealed that a particular mode was
unreachable (Heitmeyer et. a/. [6] describe this kind of
consistency checking in more detail). Investigation
revealed that the phrases "the cane,,, channel has not beea
reset within the last major [processing] frame" and "the
current channel has not beea reset within the major

[processing] frame" had been interpretedas semantically
equivalent. In fact the former refers to the previous
processing frame, while the latter refers to the current
processing frame. This distinction reveals an important
aspect of the underlying model which had not been
appreciated by our team: fault r_.overy actions can depend
on events in both the previous and the current processing
frames. We had assumed that only events in the I_revions

processing frame weae available for monitoring. Hence, the
inconsistency allowed us m improve our understanding of

the requireane.ms.
The learning oumomes we have described in this section

occurred only through careful (manual) analysis of

particular inconsistencies. For learning associated with
method improvement, this may be reasonable: this
learning takes place outside the critical path of a project,
and tbe time and dfort meded may be reasonable. For oO_er

types of learning. _ deadlines may not pea'mR the
kind of reflection required. Hence our next step is to

investigate how better to support the link between the
actions takento handle an inconsistency and the potential
learning ouWama_, so that the learning outcome is not
lost. This will require further empirical work with the

tools in place,to observe the conditions that help or hinder
the learning effect.

-4-

5. Conclusions

A flexible approach to the application of methods allows

designers the freedom to adopt development strategies that
are appropriate to their particular needs. Rather than rigidly
enforcing adherence to a method or process model.
developers should be allowed to deviate, and to analyse the
consequences. It is more important to be able to recognise
that a deviation has occurred, than to prevent iL The

ability to deviate frc_a the prescribed method is important
because:
• the method is never perfect

• every project is diffete_
• developers have local expertise
• people learn best from trying things out
• deviations provide data on how to improve the method
This last point is particularly imlxxtant. If changes to the
method are inspired merely by stress points when the
method is rigidly enforced, we will know where changes
are needed, but not what those changes might be. If. ou tim
other hand. changes are inspired by observed deviations
from the method, the form and context of the deviation

provides a great deal more data on how to improve the
model

is not to say that every inconsistency would lead to

an improvement in the method (or process model), but
rather that every deviation has a potential learning
outcome. Some inconsistencies may indicate that a method

improvement is needed. Others may just provide a lesson
about why the method is the way it is. and that it should
be applied more rigidly in that respect in the future. Most
importantly, it is not necessarily the case that the latter
type of lesson is already known Our example focused on
apprentices, who are more in need of such lessons than
experienced developers. However. even experienced
developers and mature methods still need to learn. A
commitment to continuous improvement implies a
commitment to checking whether methods and process
models are prescribing the right behaviour, if and when

developers have cause to doubt it.

5. Further Work

We are foUowing up the ideas presented in this paper in

a munber of ways:
• further empirical observations of the types of

inconsistency that occur in specification development,
and the ways in which they induce learning.

• development of heuristics to improve the guidance
offered for particular types of inconsistency, including
reasonin 8 about the development history (E8. so that a
recommended action does not take the developer back to
a form that has already been considered and aban&I_)

• case-based support for reasoning about which action is
most likely by cam_paring the current situation with

previous occurrences of the mistake.
• exploration of ways to alert developers to possible

learning outcomes, using on our framework for
inconsistency management.

6. Acknowledgements

Thanks to 8ashar Nuseibeh, Jack Callahan, Chuck

Neppach, Todd Montgomery., Jeff Morrison and Amer AI-
Rawas for contributions to the ideas described here. This
,_ork is partially supported by NASA through cooperative
agreement NCCW-O040 under the supervision of the
NASA headquarters Office of Safe_ and Mission
Assurance (Code Q).

7, References

[1] Balzer, R. (1991). Tolerating Inconsistency. In
Proceedings, 13th International Conference on Soft,re
Engineering (ICSE-13). Austin, Texas. USA, pp158-
165.

[2] Cugola, G., Di Nitro, E., Ghezzi, C., & Mantione, M.
(1995). How to Deal with Deviations During Process
Model Enactment. In Proceedings.17th International
Conference on Software Engineering. Seattle.
Washington. pp265-273.

[3] Easterbrook. S. M., Finkelstein. A. C W., Krarnex. J..
& Nuseibeh. B. A. (1994). Co-ordinating Distributed
ViewPoints: the anatomy of a consistency check.
Concurrent Engineering: Research and Applications.
2(3). 209-222.

[4] Easterbrook, S. M., & Nuseibeh. B. A. (1995).
Managing Inconsistencies in an Evolving
Specification. In Second IEEE Symposium on
Requirements Engineering. York. UK. pp48-55.

[5] Gabbay, D.. & Hunter, A. (1991). Making
Inconsistency Respectable: A Logical Framework for
InconsistencyinReasoning.Pan I - A PositionPaper.
In Proceedings, Fundamentals of Art_cial Intelligence
Research '91, pp19-32.

[6] Heitmeyer, C. L., Labaw, B., & Kiskis, D. (1995).
Consistency Checking of SCR-Style Requirements
Specifications. In Second IEEE Symposium on
Requirements Engineering. York, IIK, pp56-63.

[7] Jamart. P..& van Lamsweexdc,A. (1994). A Reflective
Approach to Process Model Customisation. Enacmaeat
and Evolution. In Third International Conference on the

Software Process, Re,ston.Virginia.
[8] Narayanaswamy, K.. & Goldman. N. (1992). "'Lazy"

Consistency: A Basis for Cooperative Software
Development. In Proceedings. International Conference
on Computer-Supported Cooperative Work (CSCW'92).
Toronto, Canada, pp257-264.

[9] Nuseibeh, B., Finkelstein. A. C. W.. & Krarner. J.
(1993). Free-Grain Process Modelling. In Proceedings,
Seventh International Workshop on Software

Specification and Design (IWSSD-7), Redondo Beach,
CA. USA. pp42-46.

[I0] Schwanke.R.W., & Kaiser.G. E. 0988). LivingWith
Inconsistency in Large Systems. In J. F. H. Winlder
(Ed.). Proceedings of the International Workshop on
Software Version and Configuration Control. Grassau.
Germany. pp98-118.

-5-

